- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bond, Andrew (1)
-
Brown, Ashley C. (1)
-
Chee, Eunice (1)
-
Cruse, Glenn (1)
-
Hoffman, Maureane (1)
-
Mihalko, Emily (1)
-
Morrill, Landon (1)
-
Nandi, Seema (1)
-
Nellenbach, Kimberly (1)
-
Snider, Douglas B. (1)
-
Sollinger, Jennifer (1)
-
Sproul, Erin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Platelets crucially facilitate wound healing but can become depleted in traumatic injury or chronic wounds. Previously, our group developed injectable platelet‐like particles (PLPs) comprised of highly deformable, ultralow crosslinked pNIPAm microgels (ULCs) coupled to fibrin binding antibodies to treat post‐trauma bleeding. PLP fibrin‐binding facilitates homing to sites of injury, promotes clot formation, and, due to high particle deformability, induces clot retraction. Clot retraction augments healing by increasing clot stability, enhancing clot stiffness, and promoting cell migration into the wound bed. Because post‐traumatic healing is often complicated by infection, the objective of these studies was to develop antimicrobial nanosilver microgel composite PLPs to augment hemostasis, fight infection, and promote healing post‐trauma. A key goal was to maintain particle deformability following silver incorporation to preserve PLP‐mediated clot retraction. Clot retraction, antimicrobial activity, hemostasis after trauma, and healing after injury were evaluated via confocal microscopy, colony‐forming unit assays, a murine liver trauma model, and a murine full‐thickness injury model in the absence or presence of infection, respectively. We found that nanosilver incorporation does not affect base PLP performance while bestowing significant antimicrobial activity and enhancing infected wound healing outcomes. Therefore, Ag‐PLPs have great promise for treating hemorrhage and improving healing following trauma.more » « less
An official website of the United States government
